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Prediction Precedes Control in Motor Learning

Procedures for details). Figure 1 shows, for a singleJ. Randall Flanagan,1,* Philipp Vetter,2

Roland S. Johansson,3 and Daniel M. Wolpert2 subject, the hand path (top trace) and the grip (middle)
and load (bottom) force records from the first 10 trials1Department of Psychology

and Centre for Neuroscience Studies under the novel viscous load as well as trials 15 and 20
and every 10th trial thereafter. The first three trials areQueen’s University

Kingston, Ontario K7L 3N6 the warm-up trials in which the viscosity coefficient was
incrementally increased. The hand path is shown in theCanada

2 Sobell Department of Motor Neuroscience coronal plane, and the start point of each path is on
the left (as though viewing the path from in front ofInstitute of Neurology

University College London the subject). In early trials, the load caused an upward
perturbation of the hand path. The curvature and lengthQueen Square

London WC1N 3BG of the hand path decreased gradually, and roughly
straight paths were often observed by trial 70. Thus, thisUnited Kingdom

3 Section for Physiology subject only gradually exerted control over the load so
as to produce the straight-line hand paths observed inDepartment of Integrative Medical Biology

Umeå University point-to-point arm movements without unusual loads
[9–11].SE-901 87 Umeå

Sweden In contrast, good grip force prediction was quickly
established. In the first few trials, clear reflex-mediated
increases in grip force were observed. For example, in
the first full load trial (trial 4; see inset in Figure 1), aSummary
sharp increase in grip force (see arrow) was observed
during the movement, and grip force continued to in-Skilled motor behavior relies on the brain learning both
crease after the load force peak and reached its peakto control the body and predict the consequences of
about 90 ms later. Such reflexive grip force increasesthis control. Prediction turns motor commands into
are indicative of poor load force prediction [12]. How-expected sensory consequences [1], whereas control
ever, after about four full load trials, reflexive increasesturns desired consequences into motor commands.
in grip force were seldom observed, and the grip andTo capture this symmetry, the neural processes under-
load force peaks coincided closely in time (see, for ex-lying prediction and control are termed the forward
ample, trial 10 in the inset).and inverse internal models, respectively [2–5]. Here,

Overall, there was a strong relationship between thewe investigate how these two fundamental processes
grip force and load force magnitudes. A reliable relation-are related during motor learning. We used an object
ship between the peak forces was observed (r � 0.69;manipulation task in which subjects learned to move
p � 0.001), and the slope and intercept of the lineara hand-held object with novel dynamic properties
regression line were 2.10 and 0.62 N, respectively. Reli-along a prescribed path. We independently and simul-
able correlations were also observed when fitting thetaneously measured subjects’ ability to control their
data from each subject separately (p � 0.001 in all eightactions and to predict their consequences. We found
cases). To assess the temporal coordination of grip anddifferent time courses for predictor and controller
load forces, we examined the timing of the peak rateslearning, with prediction being learned far more rapidly
of increase in grip force and load force that occurredthan control. In early stages of manipulating the object,
during the initial phase of the movement. A reliable rela-subjects could predict the consequences of their ac-
tionship between the peak force rate times was ob-tions, as measured by the grip force they used to grasp
served (r � 0.82; p � 0.001), and the slope and interceptthe object, but could not generate appropriate actions
of the linear regression line were 1.12 and �0.04 s,for control, as measured by their hand trajectory. As
respectively. Thus, the peaks in grip force rate and loadpredicted by several recent theoretical models of sen-
force rate coincided closely in time. When fitting thesorimotor control [6–8], our results indicate that peo-
data from each subject separately, significant correla-ple can learn to predict the consequences of their
tions were also observed (p � 0.001 in all eight cases).actions before they can learn to control their actions.

To quantify trajectory learning, we computed, for each
trial, the distance traveled by the hand path. Figure 2A

Results and Discussion shows the mean path distance, averaged across sub-
jects, as a function of trial. The open circles represent

Subjects were required to grasp an object with a preci- the three warm-up trials, and the points to the right
sion grip and move it along a straight line. During the represent the ten replication trials. The figure shows that
movement, a novel viscous load, which perturbed the trajectory learning was gradual. An exponential of the
load experienced by the fingers and therefore the hand form y � aebx � c fit to the mean data points yielded a
path, was applied to the object (see the Experimental half-life of 19.8 trials. Nonlinear regression revealed that

all three parameters of the exponential were significant
(p � 0.05). (Note that, for each of the exponential fits*Correspondence: flanagan@psyc.queensu.ca
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Figure 1. Hand Paths and Force Profiles for
Selected Trials Moving the Object with Novel
Dynamics

For each trial, the hand path is shown and
the grip force (thick trace) and load force (thin
trace) records are shown below. The dashed
line represents zero force. The first three trials
are warm-up trials in which the load was in-
crementally increased. The inset shows grip
force and load force records from trials 4 and
10. For both trials, the left margin of the gray
bar is aligned with peak load force, and the
width of the bar is 100 ms. The open circles
indicate the grip and load force at the start
and end of this 100-ms epoch.

described in this paper, very similar parameter estimates yielded by an exponential fit to the mean force ratios was
3.71 trials. This corresponds closely with our estimate ofand confidence intervals were obtained when fitting the

mean data points averaged across subjects and the the rate of learning of grip force prediction (above). The
mean force ratios in the replication trials were clearlyindividual data points from all subjects.)

Figure 2B shows the percentage change in grip force lower than in the initial trials being replicated and were,
if anything, smaller than in the later full force trials. It is(from the time of peak load to 100 ms later) as a function

of trial. In sharp contrast to the gradual learning curve important to stress that the large reactive grip force
increases observed in the first few trials are unlikely toobserved for trajectory learning, this measure de-

creased rapidly over the initial 5–10 full load trials and be due simply to the larger overall grip force used in
these trials. First, our measure of grip force increase,then leveled off. The exponential fit revealed a half-life

of 2.6 trials, and all parameters were significant (p � from the time of peak load to 100 ms later, was normal-
ized to grip force at the time of peak load. Second, with0.05). Thus, although grip force failed to accurately pre-

dict the novel load in the first few trials, good prediction greater overall grip force, smaller reactive grip force
increases are observed [15].developed rapidly such that reactive increases in grip

force were no longer observed. These above results demonstrate that subjects
learned to predict the behavior of the object with novelAt the end of learning, replication trials were per-

formed in which subjects were required to produce tra- dynamics, so as to generate appropriate grip forces,
before they learned to control the behavior of the object,jectories that matched those from the first ten full load

trials in terms of the path (see the Experimental Proce- so to as achieve the desired movement trajectory. It
is important to emphasize several differences betweendures for details). Importantly, the percentage change

in grip force in the replication trials was far lower than learning to control the trajectory of the object and learn-
ing to modulate grip force appropriately. In our task, itin the initial few full load trials. Thus, despite moving

the object with similar kinematics as in the initial trials, is the desired trajectory of the object that is specified
by the goal; namely, to move the object in a straight lineat the end of learning, subjects adjusted grip force pre-

dictively. This result indicates that the large percent from the start location to the target within a specified
time. Although maintaining a stable grasp may also beincreases in grip force observed in the initial learning

trials were not merely a byproduct of curved hand paths. viewed as a goal, the aim is simply to preserve an ade-
quate ratio of grip force to load force. The desired gripThe percentage change in load force (from the time of

peak load to 100 ms later) is shown in Figure 2C. On force profile depends solely on the trajectory of the
object and the dynamics of the object (which togetheraverage, there was about a 10% decrease in load force

100 ms after the peak. In contrast, the percentage determine the load force profile), and it is not directly
specified by the task. Although people will slow downchange in grip force – in the later trials, when reactive

increases in grip force were no longer observed – was their movements if excessive grip force would otherwise
be required [16], there is no evidence that the form ofclose to zero. This reflects the fact that reductions in

grip force tend to be more sluggish than reductions in the hand trajectory is determined by constraints on grip
force production. To the contrary, very similar hand tra-load force (e.g., [12–14]).

Warm-up trials were included so as not to startle our jectories are observed with and without objects in hand
(e.g., [13, 17–19]). Thus, grip force responses may besubjects, as this might lead to excessive grip forces

when first experiencing the novel dynamics. The results viewed as postural adjustments that provide support
and stabilization for the task at hand [20, 21].shown in Figure 2D indicate that this approach was

successful. The figure shows the mean grip force to Learning to control the object trajectory involves
learning a new mapping between the desired trajectoryload force ratio averaged across each movement. The

mean ratio was slightly elevated in the first few full force (which does not change in our task) and the motor com-
mands required to achieve this trajectory. Initially, thetrials and then leveled off at a value of about 3.5. The

heightened ratio in the initial trials was largely due to actual trajectory will be disturbed by the novel object
dynamics such that there will be a discrepancy betweenincreases in grip force; the average load force remained

quite constant across all full force trials. The half-life the actual and desired trajectories. In contrast, the motor
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profiles. However, knowledge of the (external) dynamics
of the object is required to determine the desired grip
force profile since the load force acting at the fingertips
depends on these dynamics in combination with the
trajectory of the object.

Given that the novel object dynamics will affect both
the trajectory of the object and the desired grip force,
it follows that learning the dynamics of the object is
essential for both grip force and trajectory control. How,
then, can we explain why the former is established far
more rapidly than the latter? One possibility is that grip
and trajectory learning involve the adaptation of sepa-
rate inverse models, with one adapting more rapidly.
Thus, one inverse model would map the desired object
trajectory onto arm motor commands, whereas the other
would map the desired object trajectory onto grip force
motor commands. Note that the motor commands
needed to control the arm depend on the dynamics of
the object as well as the dynamics of the arm itself,
whereas the motor commands required for grip force de-
pend on the dynamics of the object as well as the internal
dynamics of the object. Given that both the dynamics
of the arm and the internal dynamics of the object are
familiar, the only new learning required by each inverse
model would be the dynamics of the object (i.e., the
external or motion-dependent dynamics). Thus, it seems
unlikely, a priori, that the two inverse models would be
learned at different rates. Moreover, adaptation of the
internal model for grip force should depend on adapta-
tion of the inverse model for trajectory control because
the mapping between the desired object trajectory and
required grip force, which is determined by the actual
trajectory, will change as the inverse model for trajectory
control adapts and the discrepancy between the actual
and desired object trajectories changes.

Another possible explanation for our results is that
grip force learning involves the adaptation of a forward
model that is distinct from the inverse model adapted
for trajectory control [22, 23]. By combining a forward
model of the object and arm with a copy of the arm motor
command (efferent copy [24]), the load force acting at
the fingertips (or, more precisely, the expected sensory
consequences of the load force) could be predicted.

Figure 2. Measures of Grip Force Prediction and Trajectory Control The output of the forward model would then be sent to
(A) Hand path distance plotted as a function of trial. Each point a grip force controller to generate grip motor commands
represents the average of eight subjects, and the vertical lines repre- appropriate for the expected load force. An important
sent 1 SE. The open circles represent the three warm-up trials in

feature of this control scheme is that adaptation of thewhich the novel load acting on the object was incrementally in-
forward model does not require information about thecreased. The ten points shown to the right represent the replication
desired object trajectory. Adaptation of the forwardtrials in which the subject had to reproduce the trajectories of the

first ten trials with the full novel load. The solid curve represents an model is based on the error between actual sensory
exponential fit to the mean values averaged across subjects. feedback and sensory feedback predicted from the arm
(B–D) Corresponding plots showing the percentage changes in (B) motor commands, regardless of whether the latter
grip force and (C) load force from the time of peak load force to achieve the desired trajectory or not. Thus, in theory,
100 ms later; (D) the mean ratio of grip force to load force within a

the forward model can be adapted independently of thetrial.
inverse model.

Several motor control architectures have recently
system does not have to learn a new mapping between been proposed that have explicit representations of sep-
desired grip force and grip motor commands. This map- arate forward and inverse models for prediction and
ping depends only on the internal dynamics of the object control [6–8]. Our results suggesting faster learning of
(e.g., object compliance) that do not change in our task. the predictor over the controller are consistent with
That is, grip force is generated against a familiar, rigid models that incorporate a predictor that is used to train
object throughout the experiment. Thus, there will be the controller [6, 7, 25]. In fitting exponentials to the grip

force and trajectory learning curves, we obtained a rationo discrepancy between desired and actual grip force
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horizontal velocity to upward force was increased from 6.25 N/m/sof half-lives of 2.64–19.8. Within the framework of com-
to 25 N/m/s in increments of 6.25 N/m/s. The coefficient then re-bined forward and inverse models, this suggests that
mained at 25 N/m/s for the remaining 86 trials. We used warm-upthe forward model is adapted 7.5 times more quickly
trials to prevent subjects from overgripping the test objects when

than the inverse model. A recent simulation of trajectory first encountering the novel dynamics. After completing these 90
adaptation to novel dynamics [8] found that forward trials, subjects were asked to replicate, with the same object dynam-

ics, the movement paths they produced in their first 10 full loadand inverse models are learned at similar rates when
trials with the novel object (trials 34 to 43). The path to be replicatedadapting to a novel force field, but that the forward
was displayed on the monitor together with the current position ofmodel is learned five times more quickly when subse-
the object, and the same auditory timing cue was provided. Eachquently adapted to an opposing force field. However,
of the ten traces was presented six times in a block fashion, and

the authors caution that these estimates “can only be the block order was randomized. The replication trial that most
taken as preliminary evidence, because the ability to closely matched the original trial in terms of velocity was selected

as the replication trial. Specifically, we computed, for both the hori-estimate the rate of adaptation of the inverse model
zontal and vertical velocity, the root mean square errors betweenwas hampered by the relative insensitivity of movement
the target trial and each replication trial and selected the replicationparameters to changes in this part of the adaptive con-
trial with the smallest summed error. By comparing grip forces introller.”
the first ten full load trials with the replication trials, we could exam-

In summary, we have shown that, in a motor learning ine the effect of learning grip force prediction independently of the
task involving the manipulation of an object with novel form of the trajectory.

Raw position and force data were filtered offline with a 4th order,dynamics, subjects can learn to predict the behavior of
zero phase lag, 14 Hz low-pass Butterworth filter. The grip forcethe object before they master control over the behavior.
was computed as the average of the normal forces at the two gripThe ability to quickly learn prediction enables us to stabi-
surfaces. To compute load force, we first determined, for each griplize our limbs and the load and may also play an impor-
surface, the resultant of the two tangential forces, and we then

tant role in training the controller. summed these resultant forces. To assess the ability of subjects to
control the object with novel dynamics, we simply measured the
hand path distance. The start and end of the movement were definedExperimental Procedures
at the times at which the resultant velocity of the hand first exceeded
and last dropped below 2 cm/s, respectively. To assess subjects’Two six-axis cylindrical force transducers (Nano F/T, ATI Industrial
ability to predict these dynamics, we measured the magnitude ofAutomation) were embedded in a custom-built cylindrical test object
the reactive grip force response. When manipulating objects withwith two parallel vertical grip surfaces 3 cm in diameter and 6.4 cm
familiar dynamics [13, 26, 27], or novel dynamics that have beenapart. The two grip surfaces were covered with fine grade 300 sand-
learned [19, 28], peak grip force coincides closely in time with peakpaper. Each force transducer measured translational forces in three
load force. Such predictive modulation of grip force may be con-dimensions (0.05 N resolution) at 500 Hz. The test object was
trasted with reactive grip adjustments that typically occur 60–90 msattached to a light-weight robotic manipulator (Phantom Haptic In-
after unexpected or poorly predicted changes in load [12, 29–32].terface 1.5, Sensable Devices) that could generate forces up to 8
As a consequence of these reactive grip responses, peak grip forceN in any of three dimensions. Three optical encoders, placed on
lags behind the load force peak by some 100 ms [33–36].the three motors of the robot, were used to measure the object’s

To capture such reactive grip changes, we subtracted the gripposition (0.1 mm resolution) at 500 Hz. The three-dimensional force
force at the time of peak load force from the grip force measuredexerted by the manipulandum on the hand was servo controlled at
100 ms later and normalized this difference by dividing it by the grip1000 Hz in order to simulate novel object dynamics. Specifically,
force at the time of peak load force. For comparison, we computedwe used the manipulandum to create an unusual force field; as
the relative load force change by subtracting the peak load forcesubjects moved the object from right to left in the horizontal plane,
from the load force 100 ms later and dividing by peak load force.as required in our task, an upward vertical force was generated
We expressed these relative changes in force as percentages. Weproportional to the horizontal velocity of the object.
also computed, for each trial, the correlation between the rate ofEight right-handed subjects who were naive as to the purpose of
change of grip force and the rate of change of load force and thethis experiment gave their informed consent. A local ethics commit-
average grip force to load force ratio. Both of these measures weretee approved the experimental protocol. Using their right hand, sub-
computed over the period of time from the start of movement tojects grasped the test object by using a precision grip with the tips
the end of movement.of the index finger and thumb on the grip surfaces. The grip axis

was orthogonal to the subjects’ coronal plane, and the digits were
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