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Motor adaptation is usually defined as the process by which our nervous system produces accurate movements while the

properties of our bodies and our environment continuously change. Many experimental and theoretical studies have characterized

this process by assuming that the nervous system uses internal models to compensate for motor errors. Here we extend these

approaches and construct a probabilistic model that not only compensates for motor errors but estimates the sources of these

errors. These estimates dictate how the nervous system should generalize. For example, estimated changes of limb properties

will affect movements across the workspace but not movements with the other limb. We provide evidence that many movement-

generalization phenomena emerge from a strategy by which the nervous system estimates the sources of our motor errors.

Suppose I throw a stone with my right hand and it travels less than I
had expected. This observation can have at least two interpretations:
the stone may be heavier than I thought, or my arm may be weaker
than I thought. If I believe the stone to be heavier, I will adjust
accordingly the next time I throw the same stone, with my right or
my left arm. Movements I make without the stone, clearly, shouldn’t be
influenced by my updated estimate of the stone’s weight. If, on the
other hand, I believe my right arm to be weaker, I will adjust future
movements with this arm, with or without the stone, but not
subsequent movements of my (unaffected) left arm. This example
highlights what our intuition suggests and dynamics demands: the
nervous system needs to estimate not only the necessary corrections
(for example, throw with more effort) but also the sources of errors
(for example, the stone is heavy or my arm is weak) when we adapt
our movements.

Ideally, the nervous system should treat the body and the world as a
coupled dynamical system whose properties constantly change over
time. For instance, the strength of each of our muscles may vary over
time (through fatigue, exercise, injury, aging and so forth). Similarly,
the objects we interact with have variable properties and dynamics. To
adapt and generalize, the nervous system needs to attribute observed
movement errors to either the body or the world and then estimate the
value of those properties.

Many studies have analyzed how human subjects adapt to perturba-
tions and have found that they estimate these disturbances instead of
simply memorizing a motor plan1,2. This idea is captured by the notion
of an internal model, a representation of how our motor system
predicts the outcome of motor commands. Studies that examine
internal models assume that motor errors, regardless of their source,
are estimated with a general model of disturbances. Although some
studies do recognize that multiple sources may be responsible for

motor errors3,4, their internal models do not distinguish between them.
This single model compensates for any changes in the properties of the
world or the body. As a result, these models have no mechanism for
representing that an estimated change in the limb should generalize
across the workspace but not to the other limb, and that an estimated
change in the world should generalize to the other hand.

Here we present a model that formalizes the estimation of the
sources of motor errors by adapting its representation of both the body
and the world. This source-estimation model constantly updates its
parameter estimates and its uncertainty about those estimates through
an application of bayesian inference. To test the model, we compare its
predictions to three classes of published motor adaptation studies:
velocity-dependent force fields, rotating (Coriolis) rooms and inertial
perturbations. Our model predicts many findings of these experiments.
These results support our hypothesis that the nervous system adapts
and generalizes by estimating the sources of motor errors.

RESULTS

Modeling sources of errors: body and world

As in the example of throwing a stone, a continuum of possible
parameter values can explain many motor errors equally. In addition,
owing to noisy perception and commands, the motor system operates
under uncertain conditions. The nervous system therefore needs to
assign credit to the likely parameters and estimate their properties.
Bayesian inference is a systematic method for optimally solving such a
credit-assignment problem. For example, if we knew the stone’s weight
with great certainty and errors in our estimate of its inertia could not
account for the motor errors we observed, then other sources, such as
limb properties, would be considered likely culprits. This would result
in relatively small changes in our estimate of the stone’s weight and
large changes in our estimates of limb properties (for example, mass,
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strength and so forth). Bayesian inference formalizes this update
process by combining our belief in parameter estimates with a like-
lihood that these parameters can account for our observations. This
results in updated parameter estimates that are maximally certain.

Our approach extends the traditional internal model to allow for the
estimation of multiple sources of error. The source estimation model
adapts by estimating the properties of the body and the world and
generalizes by using these estimates for new movements. When adapt-
ing to perturbed movements, the source estimation model may
produce the same compensatory corrections that a traditional internal
model would. However, the two classes of model make different
predictions for generalization to new movements. For example, when
we adapt while throwing a stone and then throw it in a new direction,
or throw it with our left arm, or throw a different stone, the source
estimation model has the necessary information to generalize. Esti-
mates about the world can transfer across limbs; they represent
knowledge that is independent of the motor apparatus. Body estimates
help us to generalize to new motor goals, but do not necessarily transfer
from one limb to another; they represent knowledge of a specific
motor apparatus.

Here we examine a nonlinear musculoskeletal model of the human
limb (body) interacting with various imposed (world) disturbances.
The source estimation model uses this simulated body–world system to
predict adaptation and generalization. To estimate the body (limb) and
world (experimental perturbations) parameters, we used an extended
Kalman filter (see Methods). The source estimation model infers
changes in the nominal values of a large number of parameters. We
assume that the variations driving these changes are proportional to
their nominal values to restrict the model to two free parameters, a
proportionality constant for body parameters and another for world
parameters. We further restrict the model to a single free parameter, a,
the ratio of these values. For all the results shown below, a was set to 0.4;
that is, the model assumes the body is more variable than the world.
Thus, if all parameters are equally likely to account for an observed
motor error, body parameters will receive more credit. We have thus
obtained a model with a single free parameter that can predict motor

adaptation and generalization. Below we pre-
sent the model’s predictions for simulated
experimental studies of human reaching
movements (see Methods for details).

Velocity-dependent force field studies

We first compare the source estimation model
with the results from a study on motor
adaptation and generalization5 that asked
questions highly relevant to the issues we
consider here. In that study, researchers exam-
ined whether the nervous system represents
disturbances in terms of a body-based (intrin-
sic) coordinate frame or a world-based
(extrinsic) coordinate frame. A robot ren-
dered velocity-dependent forces that per-
turbed the hand of subjects while they made
reaching movements. After the subjects
adapted, they were tested for generalization
in a different part of the workspace
(Fig. 1a,b). When the disturbing forces were
defined in terms of the hand’s velocity (an
extrinsic coordinate frame), subjects general-
ized poorly. However, when the forces were
defined in terms of the angular velocities of

the subject’s limb (an intrinsic coordinate frame), subjects generalized
well. Thus, the study concluded that the nervous system represents
disturbances in an intrinsic (joint-based) coordinate system.

That study (and many subsequent ones) examined its hypothesis in
terms of two coordinate frames, assumed to be mutually exclusive.
Here we argue that the nervous system should not simply use one
representation. Such an assumption is equivalent to the belief that the
properties of either the body or the world are constant and known
without error. Yet all of these properties are variable and need to
be estimated.

We used the source estimation model to simulate the same adapta-
tion and generalization experiment with equivalent force fields (see
Methods). Once the model has adapted to the external field, it has
updated estimates of all its parameters, both world and body proper-
ties. To what extent a parameter’s estimate is updated depends on its
ability to explain the motor errors and on the model parameter a. These
inferred estimates are used to compensate for the actual external field.
For any setting of this variable a, we will obtain a different set of
predictions for movement generalization.

For illustrative purposes, we present how our model adapts with two
extreme values of the parameter a. When the system attributes errors
only to the world and the field is hand-based, reaches made in the left
region of the workspace perfectly cancel the force field (Fig. 1c,
bottom). However, if the field is joint-based, there are clear and distinct
patterns of generalization that reveal the internal model’s incorrect
estimation of the velocity-dependent force field (Fig. 1c, top). This type
of inference of sources of error occurs when the model is relatively
certain of the body parameters (a c 1). Similarly, if the system
attributes errors only to the body (a { 1) it will generalize well with
joint-based fields and poorly with hand-based fields (Fig. 1d). These
extreme settings of a correspond to the situation present in traditional
internal model studies where only a single disturbance, or a single
coordinate system, is estimated during adaptation.

The source estimation model predicts the experimental data well
(compare Fig. 1e with Fig. 1f) under the assumption that changes in
the body are more likely than changes in the world (a ¼ 0.4). To
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Figure 1 Simulated intralimb generalization. (a) The subject adapts to a velocity-dependent force field in

the right region of the workspace. (b) The subject then makes reaches in the unexperienced left region of

the workspace to test for generalization. (c) A disturbance is estimated as an entirely extrinsic velocity-

dependent force field and the arm is exposed to an intrinsic field, where the torques, s, are defined in

terms of joint velocity, ḣ (top); and an extrinsic field, where the forces, F, are defined in terms of the

hand’s velocity, Ẋ (bottom). (d) A disturbance is adapted to as misestimates in limb properties and the

arm is exposed to an intrinsic, velocity-dependent force field (top) and an extrinsic field (bottom).

(e) Experimental results for intralimb generalization (reproduced from ref. 5) when subjects are exposed

to an intrinsic and an extrinsic force field; top and bottom, respectively. (f) Simulated intralimb
generalizations showing a mixture of inferred body and world estimates.
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quantify this similarity, we compared signed perpendicular errors at
25%, 50% and 75% of the movement displacements. Our model had an
r.m.s. error of 4.81 cm, whereas the results based on a hypothesis of
world-only or body-only inferences (Figs. 1c and 1d, respectively) had
r.m.s. errors of 11.0 cm and 7.70 cm, respectively.

A close inspection of the experimental generalization to an intrinsic
field (Fig. 1e, top) shows that the trajectories are not perfectly straight
but tend to be slightly curved into the direction predicted by general-
ization after estimating world errors (Fig. 1c,f, top). This indicates that
the nervous system may be generalizing simultaneously in hand-
based and joint-based coordinates, while placing a clear emphasis on
the latter. The model we present here naturally shows this kind of
mixed generalization.

Examining movements with only one limb cannot fully reveal
how the nervous system adapts and generalizes. Consequently,
generalization to the other limb (interlimb generalization) is also
widely tested. In a notable study of interlimb generalization6, subjects
once again adapted to a robot-rendered, velocity-dependent force
field while making reaching movements (Fig. 2a). One group of
subjects adapted to a hand-based clockwise curl field, and another
group adapted to a counterclockwise curl field. All subjects were then
tested using their other limb in a counterclockwise field to
examine generalization (Fig. 2b).

The experiment aimed to distinguish between two hypotheses. If
internal models use hand-based (extrinsic) coordinates, then they
should transfer to the other hand when reaching in the same field
and facilitate motor adaptation. But if internal models use joint-based
coordinates (intrinsic), then making reaching movements with the
other hand would generalize only if the field switched from a clockwise
to a counterclockwise field upon switching hands. Subjects adapting to
a counterclockwise curl field showed some ability to compensate for
the same counterclockwise curl field when they switched to their other
hand (Fig. 2c). However, when they adapted to a clockwise curl field
and switched to their other hand, their paths were even more displaced
than those of naive subjects (Fig. 2c). The investigators interpreted this
as supporting evidence for internal models with an extrinsic reference
frame during interlimb generalization.

When the source estimation model adapts to the same counter-
clockwise curl field, it will assign more credit to the limb properties but
some to the world properties. However, only the estimated world
parameters will transfer to the other limb. This estimated external
disturbance is weak but still allows the other limb to partially
compensate for the field during the initial exposure (Fig. 2d). By
contrast, when adapting to the clockwise curl field, the estimated world
parameters transfer to the other limb to estimate a clockwise distur-
bance. When a counterclockwise curl field is then presented to the
other hand, the limb’s trajectory is greatly displaced. The transferred
estimates of the world disturbance are used to compute a compensa-
tory motor command that only acts to strengthen the field’s effects
(Fig. 2c,d). In this respect, the source estimation model predicts the
pattern of interlimb generalization well.

The source estimation model may help to explain another salient
property of motor generalization: no transfer of adapted skills was
found when subjects trained with their nondominant hand and
switched to their dominant hand. As we have demonstrated, the
nervous system seems to favor interpreting motor errors in terms of
uncertainty and variability in limb properties. We expect this uncer-
tainty to be larger for the less familiar, nondominant limb, and several
studies have examined this notion7,8. When a indicates an even higher
uncertainty about the body for the nondominant hand, we also find
that adaptation generalizes from the dominant to the nondominant
hand but not vice versa (Fig. 2e, a¼ 0.1). This is because motor errors
with the nondominant hand are even more likely to be attributed to a
misestimate of that limb’s properties, information that does not
facilitate subsequent movements with the dominant limb.

Rotating room studies

Experiments using robots to perturb human hand movements do not
reveal all aspects of generalization behavior. In another set of experi-
ments, researchers analyzed reaching movements made in a rotating
room9–11. The rotating room induces nonlinear Coriolis forces on the
limb proportional to the limb’s translational velocity (Fig. 3a). Though
this study was distinct from the previous studies in a number of ways,
the results were generally similar. Subjects initially produced motor
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Figure 2 Simulated interlimb generalization. (a) Adaptation and (b) interlimb generalization with a curl field. (c) Experimental evidence (reproduced from

ref. 6) showing early exposure, adaptation (late training) and interlimb generalization (test) in a clockwise (extrinsic) and counter-clockwise (intrinsic) field.

(d) Simulated data with our model demonstrating similar findings as the result of a small estimated external field and large misestimates in limb parameters.

(e) When we increase the body’s uncertainty (decreasing a to 0.1), our model predicts asymmetric generalization. The top plots display generalization

from the dominant to the nondominant limb; the bottom plots display generalization from the nondominant to the dominant limb with little transfer of

the adapted skill.
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errors and then adapted and showed aftereffects consistent with a newly
learned internal model. When subjects were then asked to make reaches
with the alternate arm (Fig. 3b), their movements were relatively
straight but rotated slightly, appearing as if they were made to a
laterally displaced target (Fig. 3c). Instead of explaining the results in
terms of coordinate frames, the investigators proposed that this shift in
the reaching direction represents a transferred change in the
motor system’s kinematic plan and is thus evidence for distinct
representations, one for movement dynamics and another for kine-
matics9. Finding evidence for two distinct representations, the
experiment supports one of the central assumptions of our source
estimation model.

Simulated reaches made with the source estimation model acting
under a Coriolis force disturbance predict a similar pattern of adapta-
tion and generalization (Fig. 3d). The model adapts to the disturbance
and, when the room stops rotating, produces aftereffects consistent
with the experimental data. As in the previous simulated results, the
model adapts to the rotating room by inferring relatively large
misestimates in the body’s parameters and small estimates in the
world parameters. When the left arm makes a subsequent reaching
movement, it uses this relatively small, inferred world disturbance.
However, this information causes the limb to compensate for a
nonexistent external disturbance (the room is no longer rotating),
and the movement direction is slightly altered, just as had been found
experimentally. To quantify this similarity, we again compared perpen-
dicular errors. Our model had an r.m.s. error
of 3.81 mm, whereas the same results for
a body-only or a world-only inference are
16.7 mm and 10.0 mm, respectively.

Similarly to the force field studies examined
earlier, the rotating room studies found asym-
metric generalization between the dominant
and nondominant limbs. Again, this is con-
sistent with the source estimation model. If we
assume an increased uncertainty for the non-
dominant limb’s parameters, then the model
predicts generalization to the dominant limb
that is nearly indistinguishable from a naive
movement (see Supplementary Fig. 1 online).
The nervous system’s preference for relatively
large uncertainty in the body (and even larger
uncertainty in the nondominant limb) results
in motor errors being largely attributed to

body parameters and only weakly to world parameters that would
generalize to the other arm.

Inertial disturbance studies

Velocity-dependent disturbances were used in all the studies above.
However, the nervous system is constantly faced with disturbances
of other kinds as well. For example, movements with a mass
introduce forces that also vary with the acceleration and orientation
of the limb. We thus proceeded to compare the source estimation
model with results from a motor adaptation paradigm that introduces
inertial perturbations12–14. In these studies, the subject wears an
arm splint to which a mass is attached (Fig. 4a). This disturbance
increases the subject’s apparent limb inertia by an unknown amount,
and reaching movements initially are distorted. Just as in other motor
adaptation studies, the subject eventually adapts to the disturbance
and produces relatively straight reaches. Similarly, when the distur-
bance is removed, the subject shows aftereffects indicative of the
now absent inertia. In a study using this paradigm15, subjects
adapted to reaching movements with the inertial disturbance and
then the mass was attached to their opposite limb to observe
evidence for the transfer of this motor skill (Fig. 4b). Initial move-
ments made with the opposite limb after training performed
better than under naive conditions (Fig. 4c). The researchers inter-
preted these results as indicating an intrinsic coordinate frame for
interlimb generalization.
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Figure 3 Simulated Coriolis room generalization. The room rotates with angular rate x. (a) The subject adapts to a Coriolis force disturbance and (b) interlimb

generalization is observed. (c) Experimental results of motor adaptation and interlimb generalization (reproduced from ref. 9). (d) Simulated experiment

predicting similar results.
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Figure 4 Simulated inertial perturbation generalization. (a) Subject adapts to an inertial disturbance

with the dominant limb, and (b) interlimb generalization is observed with the nondominant limb.

(c) Experimental results for initial-exposure reaches with nondominant left arm without a mass and with

a mass before and after training with the dominant right arm (reproduced from ref. 15). (d) Simulated

experiment demonstrating similar predictions for initial reaches with nondominant arm.
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When the source estimation model adapts and generalizes to a
simulated inertial disturbance, the findings are similar to the experi-
mental results (Fig. 4d). The model infers that the observed motor errors
are due largely to an incorrect estimate of the limb’s inertia and estimates
a relatively small value for the external mass. When the nondominant
limb is then tested, it makes reaches with the benefit of a small, inferred
world disturbance (the added external mass). This results in the
observed generalization. Again comparing perpendicular movement
errors, our model has an r.m.s. error of 16.5 mm, whereas a purely
world-only or body-only inference results in r.m.s. errors of 17.3 mm
and 23.5 mm, respectively.

As is consistent with the previous studies, this transfer of adap-
tation was only observed when the initial training was performed with
the dominant hand. Previously, this asymmetry was viewed as evidence
that the nervous system is less proficient at developing an internal
model for the nondominant limb. As in those studies, we find this
asymmetry when we introduce more uncertainty into the representa-
tion of the nondominant hand (see Supplementary Fig. 1).

Generalization to natural hand movements

As our source estimation model adapts the properties of both the body
and the world, a crucial test of its validity would be an experiment that
independently tests for world and body adaptations. For instance,
according to the source estimation model, if adapting to an experi-
mental disturbance results in new estimates of limb parameters, then
this information should influence movements made after the experi-
ment has ended. A few recent studies have specifically examined these
kind of aftereffects4,16. In one study in particular4, this predicted
phenomenon was found: after the subject released the robot handle,
some aspect of the training persisted. In this study, subjects adapted to a
velocity-dependent force field and were then tested with and without
grasping the robot handle. The results provide strong evidence for the
representation of a world model separate from the body model, just as
we have hypothesized. Notably, the authors found large aftereffects even
when subjects were not grasping the handle (Fig. 5a). Again, our model
can offer a concise explanation for these results. When the field is turned
off, the new estimates of both the limb and the body act to produce
aftereffects with a magnitude approximately equivalent to the force field
but an orientation opposite to it (Fig. 5b). However, when the model
makes movements without holding the robot handle, the new world
estimates are neglected, but the new body estimates persist. This results
in aftereffects of a similar nature but of reduced magnitude (Fig. 5b).

The model results may seem to suggest that once the experiment has
ended, subjects undergo a relatively slow period of ‘de-adapting’ to
return to their nominal, preexperiment state (compare Fig. 5a to
Fig. 5b). However, previous work has proposed that the nervous

system may not rely on a single representation
of the body and may switch its model of the
body, or of the world, in a context-dependent
manner17,18. These approaches can easily be
combined with the source estimation model
presented here. For example, a pair of body and
world models could be grouped together within
a specific module appropriate for a given con-
text. Then several modules could be stored and
combined at any time according to their abil-
ities to account for the current context19.

To demonstrate this multiple-module sys-
tem, we built a new source estimation model
with two world-body modules. We assume
that one module correctly represents unper-

turbed reaches (a correct limb model and no world disturbances), and a
second module is used to account for new, perturbed motor contexts.
When the force field is turned on, the large motor errors indicate a
small likelihood that the unperturbed module represents this context,
and the second module’s likelihood is large (see Methods). As a result,
the perturbed module adapts its world and body parameters. Once the
force field is turned off, the motor errors (now in the opposite
orientation) indicate that the perturbed module’s likelihood of repre-
senting this context quickly decreases, as the unperturbed module’s
likelihood increases. The unperturbed module’s high likelihood of
representing the current context essentially allows it to ‘win’ over the
perturbed module. This results in a quicker reduction in the observed
aftereffects (Fig. 5c). Moreover, by quickly switching to the unper-
turbed module, the body and world models of both modules undergo
minimal adaptation, allowing for their storage and later retrieval. These
results, along with the results of our basic model (Fig. 5b), demonstrate
that the source-estimation scheme comes close to capturing what could
be the salient temporal and spatial features of adaptation and general-
ization under such conditions.

DISCUSSION

Many traditional studies of motor control posit a single internal model
that adapts its parameters to reduce observed motor errors. Regardless
of how these errors arise, the model parameters are adjusted to
compensate for perceived disturbances and reduce future motor errors.
However, since these disturbance models do not distinguish between
errors arising from the properties of the body and the properties of the
world, their ability to make rational predictions for generalization is
limited. For example, these models have no mechanism for indicating
that what the nervous system learns about the right arm should
generalize across the workspace but not to the left arm. For this reason,
these internal models have no option but to use the learned disturbance
model to generalize under all circumstances.

By design, these internal models can only generalize along one
coordinate frame. Capitalizing on the differences between extrinsic
and intrinsic coordinate frames, experimental data has been used to
examine which of these two coordinate frames best fits the observed
data. Yet, if the nervous system is simultaneously generalizing with
parameters that vary in both coordinate frames, then the evidence for
these internal models should be mixed. Indeed, the experimental
evidence is far from clearly supporting one coordinate frame over the
other. Some intralimb generalization studies have argued for an
intrinsic representation5,20–22, whereas some evidence supports an
extrinsic representation23, and yet others have found evidence for
what is argued to be a mixed representation3. Studies of interlimb
generalization, in contrast, have found support for an extrinsic
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representation6,24,25. Further confounding the issue, generalization
seems to be asymmetrical: newly acquired skills transfer from the
dominant arm to the nondominant, but not vice versa7,8,12,26,27. Jointly,
these studies paint a complicated picture of inter- and intralimb
generalization, dependent on the task as well as the limb used. As we
have demonstrated, this may be due to an overly restrictive interpreta-
tion for describing internal models.

A recent line of work addresses how a wide range of properties of the
nervous system can be understood using bayesian statistics. Neural
coding28,29, sensorimotor integration30,31, sensory cue combina-
tion32–36 and cognitive decision making37 have all been described in
the same normative framework. In this study, we have extended these
ideas to motor adaptation and generalization—where many variables
need to be estimated simultaneously and the problem of ambiguity
between the body and the world becomes important.

Many properties of the body and the world are variable and can
contribute to motor errors. Moreover, they can contribute to errors in
an ambiguous way. Here we have proposed that the nervous system
therefore needs to estimate the sources of errors. Thus, we extended the
traditional internal model representation to one of a coupled body–
world representation. This model allows for the estimation of likely
sources of motor errors and provides a commonsense method for
generalizing on the basis of these estimations. Further, our model offers
an explanation for the inconsistent findings on extrinsic and intrinsic
representations for internal models and the longstanding observation
of asymmetric motor generalization. In addition, a source estimation
strategy may account for the apparently contradictory evidence found
examining adaptation to kinematic and dynamic disturbances. For
example, in one experiment14, kinematic and dynamic variables were
relatively uncorrelated to each other and found to have little influence
on the their respective adaptations. In a follow-up experiment38, the
kinematic and dynamic disturbances were highly correlated and their
respective influence on adaptation was substantially disrupted. In
general, whenever two experimental perturbations can be explained
by shared sources, adaptation is not independent when using a source
estimation strategy.

The source estimation model we have presented here is a preliminary
attempt to formalize the problems of motor adaptation and general-
ization. There are many modifications that future implementations
could consider. For instance, in the current model we have assumed
that the position and velocity of the limb’s endpoint (hand) is the only
sensory information available, but everything from grip force to muscle
spindle fiber afferent signals could be incorporated into the model.
Furthermore, at present we have almost entirely neglected the temporal
aspects of adaptation and instead focused on the ‘steady-state’ condi-
tions, wherein motor errors are sufficiently small as to justify the halt of
adaptation. However, our model can be extended to include adaptation
to parameters that have their own timescales39. This may be useful in
examining studies in which perturbations are gradually, as opposed to
suddenly, presented to the subject. For instance, one study of interlimb
generalization24 found that subjects who adapted to a gradually applied
perturbation showed little generalization, whereas subjects who
adapted to a sudden-onset perturbation showed the familiar character-
istics of extrinsic generalization. Assuming that the nervous system
entertains abrupt changes in motor errors as more likely the result of
sources in the world, our model should predict similar findings. Finally,
we have at present grouped parameter properties according to body
and world to minimize the number of model parameters to be tuned.
Future versions of the model could include independent properties of
all relevant parameters, whether they are body, world, extrinsic,
intrinsic or other.

In this study, we have sidestepped the issue of motor learning by
assuming that the goal of the motor system is to produce straight,
minimum-jerk trajectories40. This is a common assumption shared by
many other studies and supported by a host of data, including the
experimental studies modeled here. However, this clearly cannot be
sufficient to explain all aspects of motor adaptation. Indeed, many
studies of adaptation have demonstrated clear distinctions between
motor behaviors before and after experimental disturbances41,42.
Rather than acting to maintain a desired trajectory, the nervous system
seems to be optimizing some other criteria. Although the issues of
optimal control and motor learning are the subjects of ongoing
research43,44, exactly what the nervous system is optimizing for is still
unknown. Regardless, estimating the properties of the body and the
world is a necessary first step toward reoptimizing a new motor plan.

METHODS
Generative model. The human upper limb is modeled as a nonlinear two-link,

two-degree-of-freedom mechanism with joint angles q as

IðqÞ€q + Cðq; .qÞ .q + Bm
.
q + Kmq ¼ smotor + sworld + snoise

I(q) and C(q;
.
q) are the inertial and velocity-dependent acceleration matrices,

Km and Bm represent the joint stiffness and damping that result from muscle

forces as well as spinal and supraspinal feedback loops, smotor is the com-

manded torque, sworld is an external disturbance from the world and snoise is

the vector of motor noise (with zero mean). As elsewhere5, we shall assume that

the joint torque specified by the motor system is the sum of three components:

(1) a feedback torque, (2) a feedforward controller to compensate for limb

dynamics and (3) a compensatory term for estimated world disturbances.

smotor ¼ KPðq�ðtÞ � qÞ + KDð .q�ðtÞ � .
qÞ½ �

1

+ Î€q�ðtÞ + Ĉ
.
q�ðtÞ + B̂m

.
q�ðtÞ + K̂mq

�ðtÞ
� �

2

� ŝworld½ �
3

Î, Ĉ, B̂m and K̂m are estimates of the system variables. KP and KD are matrices

that model the limb’s (proportional and derivative) viscoelastic convergence to

a commanded trajectory q*(t).

We shall define the output of the system, y(t), as the position vector, x and

velocity vector, dx/dt of the limb’s endpoint (or hand) in a cartesian reference

frame, y¼ [x(t), dx(t)/dt]T. We shall further assume this output is corrupted by

measurement noise, n(t), with zero mean and covariance R.

We follow the lead of previous studies and assume that the motor system can

estimate a force field applied to the hand. This external perturbation is a

velocity-dependent force field, Fext, modeled as F̂ext ¼ B̂ext
dx
dt . In addition, we

will assume that an external mass, M, attached to the forearm at a known

position can also be estimated as M̂ and that its influence on the limb’s

dynamics can be modeled appropriately. We only simulate estimations of the

limb parameters I and Bm because changes in these two matrices are similar or

equivalent to the disturbances that are imposed during the experimental studies

we examine. Estimated variations from the nominal values for I and Bm, as well

as the estimated values for Bext and M (13 parameters in total) are used to

compute smotor.

To compactly parameterize all these parameters, we introduce the vector p

and a vector of inferred parameter estimates, p̂. Therefore, we can express

the estimated velocity-dependent field parameter, for example, as

B̂ext ¼ ½p̂1; p̂2; p̂3; p̂4�. An estimate of the generative model can then be

expressed as ŷðp̂; tÞ (for brevity we shall refer to this estimate simply as ŷðtÞ).

To infer these parameters, p, we will need to make one final assumption, that

the parameters vary according a random walk with a small forgetting factor,

piðt+DÞ ¼ apiðtÞ+wiðtÞ

where a ¼ 0.99 and wi is a zero-mean random variable drawn from a normal

distribution with variance si2. These variances represent 13 free parameters.

Allowing each to vary independently would provide our model with freedom to

capture the data well. However, to avoid the problem of overfitting, we restrict

these values. We make the following assumptions: for each pi, we assume its
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noise’s magnitude is proportional to its nominal value, si ¼ Cpi
o, where we

assume C takes one value for body parameters and another value for world

parameters. As the magnitude of this parameter influences the rate of adapta-

tion, a characteristic we are not investigating, we investigate only the ratio of its

values and define this ratio as a ¼ Cworld/Cbody. This single free parameter was

varied across all the simulations to find an approximate best fit to the data.

Optimal inferences. The task of the source estimation model is to infer

changes, both in the body and the world, that may account for any perceived

errors between what is observed and what is predicted. To develop our

inference algorithm, we assume that

ŷðp; tnÞ � ŷðp̂; tnÞ �
qŷ
qp

ðp� p̂Þ ð1Þ

For small perturbations in p, this is equivalent to a Taylor series approximation.

However, as is demonstrated in our results, even when the quantity (p – p̂) is

large, the inference algorithm converges to correct values. Eqn (1) and our

assumption of normal, uncorrelated noise and random walks in the parameters

are the necessary assumptions to conclude that the Kalman filter is an optimal

mechanism for performing inferences of p. Therefore, to best estimate the

parameter values based on the observed system output and our confidence in

the current parameter values, we update the parameter values according to

the rule

p̂n+1 ¼ p̂n +Knðy � ŷÞ

where Kn is the Kalman gain matrix at the nth update. This update is computed

at discrete points in time t0, t1, . . . tn, . . ., tN during each movement. The

standard update equations for the Kalman gain are

P�
n ¼ APn�1A

T +Q

Kn ¼ P�
n H

T
n HnP

�
n H

T
n +R

� ��1

Pn ¼ P�
n

� ��1
+HT

n R
�1Hn

h i�1

where Q is the covariance of the parameter p (defined above through a), R is

the measurement error covariance and Pn is residual covariance of p. A is a

forgetting factor, aI. For our nonlinear model, we approximate Hn, the output

matrix at the nth time step, as

Hn½ �ij¼ ŷiðp̂; tnÞ � ŷiðp̂+ dj; tnÞÞ=d
�

ð2Þ

where dj is a small perturbation in the jth element of p. This is a back-difference

approximation to the gradient qŷ=qp evaluated at time tn. While eqn (1) holds

and eqn (2) is accurate, we have the guarantee that our update rule will yield a

set of parameters p̂ that minimizes the variance in our estimates.

To simulate inferences made with multiple modules, we introduce a second

set of parameters that are relevant for the module representing the force field,

pfield. The nominal module’s parameters (no field present) will be denoted p.

We also introduce the parameter l, a binary variable with a continuous

probability distribution. If l ¼ 1, an external field exists; if l ¼ 0, there is

no field. Using these separate parameters, the force field module and the

nominal module each have their own estimated outputs, ŷðp̂fieldÞ and ŷðp̂Þ,
respectively. The source estimation model’s overall estimate is then based on a

weighted combination of the two module’s parameters, ptotal ¼ P(l ¼ 1)pfield +

P(l ¼ 0)p. The commands used to control the limb are based on the same

weighted combination of parameters.

The probability of l is computed by comparing output estimates based on

the two modules,

Pðl ¼ 1Þ ¼ PðŷðpfieldÞjl ¼ 1ÞPðl ¼ 1Þ
PðŷðpfieldÞjl ¼ 1ÞPðl ¼ 1Þ+ ðŷðpÞjl ¼ 0ÞPðl ¼ 0Þ�½

where the probability of the force field module’s estimate is,

PðŷðpfieldÞjl ¼ 1ÞPðl ¼ 1Þ / exp �ðy � ŷðpfieldÞÞ
TR�1ðy � ŷðpfieldÞÞ=2Þ

�

and the probability of the nominal module’s estimate (the no-field condition) is

similarly defined. The probability of l is computed at each update time tn and

is then used to scale the inferences as

p̂field;n+1 ¼ p̂field;n +Pðl ¼ 1ÞKnðy � ŷÞ

Simulations. The limb parameter values were based on ref. 5. For all simulated

force field experiments, the field was equivalent to that used in the study.

Because of the size of the stiffness and damping parameters, the Coriolis forces

were largely mitigated. To counteract this, in simulations the room rotated at

five times the experimental rate. For similar reasons, in the simulated inertial

disturbance study the perturbing mass was five times as large as the experi-

mental one. For all simulated studies, we assumed q* was a minimum-jerk

trajectory specified by the target locations and the movement times reported.

Parameter estimates were updated six times per movement, and movement

targets were randomly selected until the movement errors were sufficiently

small. Software that computes this study’s inferences and generates the figures

in this manuscript is available as Supplementary Software online.

Note: Supplementary information is available on the Nature Neuroscience website.
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